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Abstract
Accuracy and interpretation are two goals of any successful predictive models. Most existing works

have to suffer the tradeoff between the two by either picking complex black box models such as recurrent
neural networks (RNN) or relying on less accurate traditional models with better interpretation such
as logistic regression. To address this dilemma, we present REverse Time AttentIoN model (RETAIN)
for analyzing EHR data that achieves high accuracy while remaining clinically interpretable. RETAIN is
a two-level neural attention model that can find influential past visits and significant clinical variables
within those visits (e.g,. key diagnoses). RETAIN mimics physician practice by attending the EHR data in
a reverse time order so that more recent clinical visits will likely get higher attention. Experiments on a
large real EHR dataset of 14 million visits from 263K patients over 8 years confirmed the comparable
predictive accuracy and computational scalability to the state-of-the-art methods such as RNN. Finally,
we demonstrate the clinical interpretation with concrete examples from RETAIN.

1 Introduction

The broad adoption of Electronic Health Record (EHR) systems has opened the possibility of applying clinical
predictive models to improve the quality of clinical services. Several systematic reviews have underlined the
care quality improvement in hospitals using predictive analysis [7, 25, 5, 20]. EHR data are represented as
temporal sequences of high-dimensional clinical variables (e.g., diagnoses, medications and procedures), where
each sequence corresponds to all medical visits from a single patient. Abundance of such EHR data provide
great machine learning opportunities for developing accurate while interpretable data driven models. However,
the key challenge lies in how to model the temporality and high-dimensionality of these EHR sequences.

Accuracy and interpretation are two goals of any successful predictive models. There is a common belief
that one has to trade accuracy for interpretation in favor to simpler models [6]. Traditional methods with great
clinical interpretation can be divided into three groups: 1) identifying a set of rules (e.g. via decision trees
[27]), 2) case-based reasoning by finding similar patients (e.g. via k-nearest neighbors [18] and distance metric
learning [36]), and 3) identifying a list of risk factors (e.g. via LASSO coefficients [15]). While interpretable,
all above models ignored the temporality of the EHR data, hence led to sub-optimal models. Latent-variable
time-series models, such as [34, 35], do capture the temporality, but often have limited interpretation due to
abstract state variables.

Recently, recurrent neural networks (RNN) have been successfully applied in modeling sequential EHR
data to perform various predictive analysis such as learning to diagnose [30] and disease progression modeling
[11, 14]. Despite the promising gain in accuracy, RNNs are notoriously difficult to interpret. While there
have been several attempts at directly interpreting RNNs [19, 26, 8], none of them provide the level of
interpretation that can serve the healthcare applications.

In this work, we propose RETAIN, a two-level neural attention model for sequential data that provides
detailed interpretation of the prediction results while demonstrating the prediction accuracy comparable to
RNN. This is made possible by our attention mechanism inspired by the behavior of human physicians. The
key idea of RETAIN (see Figure 1) is to have a temporal attention generation mechanism, while keeping the
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(b) RETAIN model

Figure 1: Common attention models vs. RETAIN, using folded diagrams of RNNs. (a) Standard attention
mechanism: the recurrence on the hidden state vector vi hinders interpretation of the model. (b) Attention
mechanism in RETAIN: The recurrence is on the attention generation part (hi or gi) while the hidden state vi

is generated by a simpler mechanism hence better interpretation.

representation learning part simple and interpretable. Similar to human doctors, RETAIN makes a prediction
by looking at the patient’s past visits in reverse time order, which computationally makes the attention
generation mechanism more stable too. RETAIN not only considers which past visit is worth paying attention
to, but also considers how much individual variables in each visit contribute to the prediction.

Using a large EHR data with 263K patients over 14m visits across 8 years, we compare RETAIN against
several baseline methods including traditional machine learning methods and RNN variants on heart failure
onset prediction. RETAIN achieves comparable performance to RNN in both accuracy and speed and
outperforms significantly all the other baselines. Finally, we demonstrate RETAIN to provide intuitive
interpretation through a concrete case study and visualization.

2 Methodology

In this section, we first describe the structure of sequential EHR data, our notation, and a general form of
predictive analysis in healthcare using EHR. Then, we describe the details of RETAIN.

EHR Structure and our Notation. EHR data of each patient is modeled as a time-labeled sequence
of multivariate observations. Assuming we use r different variables, the n-th patient of total N patients can
be represented by a sequence of T (n) tuples (t(n)i ,x

(n)
i ) 2 R⇥Rr

, i = 1, . . . , T

(n). The timestamps t(n)i denotes
the time of the i-th visit of the n-th patient and T

(n) the sequence length of the n-th patient. To avoid
cluttered notation, we describe the algorithms for a single patient and drop the superscript (n) whenever it is
unambiguous. The goal of predictive modeling is to predict labels for each time step yi 2 {0, 1}s or at the
end of the sequence y 2 {0, 1}s (without time index). The number of labels s can be more than 1.

For example, in disease progression modeling (DPM), we are given a sequence of visits where each visit is
a set of varying number of medical codes {c1, c2, . . . , cn}. The code cj is the j-th code from the vocabulary
C. Therefore, in DPM, the number of variables r = |C| and input vector xi 2 {0, 1}|C| is a binary vector
where the value one in the j-th coordinate indicates code cj is included in i-th visit. Given a sequence of
visits x1, . . . ,xT , the goal of DPM is, for each time step i, to predict the codes occurring at the next visit
x2, . . . ,xT+1, making the number of labels s = |C|.

In the case of learning to diagnose (L2D) [30], the input vector xi consists of measurements (possibly
continuous) collected by monitoring devices. If there are r different measurements, then xi 2 Rr. The goal of
L2D is, given input sequence x1, . . . ,xT , to predict the occurrence of a specific disease (s = 1) or multiple
diseases (s > 1). Without loss of generality, we will describe the algorithm for DPM, as L2D can be seen as a

2



special case of DPM where we make a single prediction at the end of the visit sequence.
In the rest of this section, we will use the abstract symbol RNN to denote any recurrent neural network

variants that can cope with the vanishing gradient problem [3], such as LSTM [23], GRU [9], and IRNN [29],
with any depth (number of hidden layers).

2.1 Preliminaries on Neural Attention Models
Attention based neural network models have recently gained much attraction in image processing [1, 32, 21, 37],
natural language processing [2, 22, 33] and speech recognition [12]. The need for attention mechanism can
be seen in the language translation task [2]: Representing the entire sentence with one fixed-size vector is
inefficient; the neural translation machine usually finds it difficult to translate the given sentence represented
by a single vector.

Intuitively, the attention mechanism for language translation works as follows: given a sentence of length
S in the original language, we generate h1, . . . ,hS , the representation of the words in the sentence, e.g. using
an RNN. To find the j-th word in the target language, we generate attentions ↵

j
i for i = 1, . . . , S for each

word in the original sentence. Then, we compute the context vector cj =
P

i ↵
j
ihi and use it to predict the

j-th word in the target language. In general, the attention mechanism allows the model to focus on a specific
word (or words) in the given sentence when generating each word in the target language.

In this work, we define a temporal attention mechanism to provide interpretable prediction models in
healthcare. Doctors generally pay attention to specific clinical information (e.g., key risk factors) and their
timing when reviewing EHR data. We exploit this insight to develop a temporal attention model that mimics
doctors’ practice, which will be introduced next.

2.2 Reverse Time Attention Model RETAIN
Figure 2 shows the high-level overview of our model. One key idea is to delegate a considerable portion of
the prediction responsibility to the attention weights generation process. RNNs become difficult to interpret
due to the recurrent weights feeding past information to the hidden layer. Therefore, to consider both the
visit-level and the variable-level (individual coordinates of xi) influence, we use a linear embedding of the
input vector xi. That is, we define

vi = Wembxi, (Step 1)

where vi 2 Rm denotes the embedding of the input vector xi 2 Rr, m the size of the embedding dimension,
Wemb 2 Rm⇥r the embedding matrix to learn. We can easily choose a more sophisticated but still interpretable
representation such as multilayer perceptron (MLP) [13, 28] which has been used for representation learning
in EHR data [10].

We use two sets of weights for the visit-level attention and the variable-level attention, respectively. The
scalars ↵1, . . . ,↵i are the visit-level attention weights that govern the influence of each visit embedding
v1, . . . ,vi. The vectors �1, . . . ,�i are the variable-level attention weights that focus on each coordinate of
the visit embedding v1,1, v1,2, . . . , v1,m, . . . , vi,1, vi,2, . . . , vi,m.

We use two RNNs, RNN↵ and RNN�, to separately generate ↵’s and �’s as follows,

gi,gi�1, . . . ,g1 = RNN↵(vi,vi�1, . . . ,v1),

ej = w

>
↵gj + b↵, for j = 1, . . . , i

↵1,↵2, . . . ,↵i = Softmax(e1, e2, . . . , ei) (Step 2)
hi,hi�1, . . . ,h1 = RNN�(vi,vi�1, . . . ,v1)

�j = tanh

�
W�hj + b�

�
for j = 1, . . . , i, (Step 3)

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN� at time step
i and w↵ 2 Rp

, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn. The hyperparameters p

and q determine the hidden layer size of RNN↵ and RNN�, respectively. Note that for prediction at each
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Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the label yi.
Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values using RNN�,
Step 4: Generating the context vector using attention and representation vectors, and Step 5: Making
prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

timestamp, we generate a new set of attention vectors ↵ and �. For simplicity of notation, we do not include
the index for predicting at different time steps. In Step 2, we can use Sparsemax [31] instead of Softmax to
make the model more interpretable.

Another key idea in RETAIN is to generate the attention vectors by running the RNNs backward in time;
i.e., RNN↵ and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. This idea is inspired
by the common behavior of physicians: When physicians try to diagnose based on the past records, they
typically study the patient’s most recent records first, and go back in time. Computationally, running the
RNN in reversed time order has several advantages as well: The reverse time order allows us to generate e’s
and �’s that dynamically change their values when making predictions at different time steps i = 1, 2, . . . , T .
It ensures that the attention vectors will be different at each timestamp and makes the attention generation
process computationally more stable.1

We generate the context vector ci for a patient up to the i-th visit as follows,

ci =

iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true label
yi 2 {0, 1}s as follows,

b
yi = Softmax(Wci + b), (Step 5)

where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the classification
loss as follows,

L(x1, . . . ,xT ) = � 1

N

NX

n=1

1

T

(n)

T (n)X

i=1

⇣
y

>
i log(

b
yi) + (1� yi)

>
log(1� b

yi)

⌘
(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output yi 2 Rs, we
can change the cross-entropy in Eq. (1) to for example mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded using RNN and generate the attention weights using
MLP. Our method, on the other hand, uses MLP to embed the visit information to preserve interpretation

1
For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1 and �1 for every

time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve more attention than the old records.

Then we need to have ej+1 > ej which makes the process computationally unstable for long sequences.
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and uses RNN to generate two sets of attention weights, recovering the sequential information as well as
mimicking the behavior of physicians.

3 Interpreting RETAIN
Finding the important visits for making a prediction can be derived based on the largest ↵i, which is simple.
However, finding influential variables is slightly more involved which will be described next. Note that a
clinical visit consists of multiple medical variables, each of which makes different amount of contribution.
The contribution of each variable is determined by v, � and ↵, and interpreting ↵ alone will tell which visit
is influential in prediction but not why.

We propose a method to interpret the end-to-end behavior of RETAIN. By keeping ↵ and � values fixed as
the attention of doctors, we will analyze the changes in the probability of each label yi,1, . . . , yi,s in terms of
the change in an original input x1,1, . . . , x1,r, . . . , xi,1, . . . , xi,r. The xj,k that lead to the largest change in
yi,d will be the input variable with highest contribution. More formally, given the sequence x1, . . . ,xi, we are
trying to predict the probability of the output vector yi 2 {0, 1}s, which can be expressed as follows

p(yi|x1, . . . ,xi) = p(yi|ci) = Softmax (Wci + b) (2)

where ci 2 Rm denotes the context vector. According to Step 4, ci is the sum of the visit embeddings
v1, . . . ,vi weighted by the attentions ↵’s and �’s. Therefore Eq (2) can be rewritten as follows,

p(yi|x1, . . . ,xi) = p(yi|ci) = Softmax

✓
W

⇣ iX

j=1

↵j�j � vj

⌘
+ b

◆
(3)

Using the fact that the visit embedding vi is the sum of the columns of Wemb weighted by each element of
xi, Eq (3) can be rewritten as follows,

p(yi|x1, . . . ,xi) = Softmax

✓
W

⇣ iX

j=1

↵j�j �
rX

k=1

xj,kWemb[:, k]

⌘
+ b

◆

= Softmax

✓ iX

j=1

rX

k=1

xj,k ↵jW

⇣
�j �Wemb[:, k]

⌘
+ b

◆
(4)

where xj,k is the k-th element of the input vector xj . Eq (4) tells us that the calculation of the likelihood of
yi can be completely deconstructed down to the variables at each input x1, . . . ,xi. Therefore we can calculate
the contribution ! of the k-th variable of the input xj at time step j  i, for predicting yi as follows,

!(yi, xj,k) = ↵jW(�j �Wemb[:, k])| {z }
Contribution coefficient

xj,k|{z}
Input value

, (5)

where the index i of yi is omitted in the ↵j and �j . As we have described in Section 2.2, we are generating
↵’s and �’s at time step i in the visit sequence x1, . . . ,xT . Therefore the index i is always assumed for ↵’s
and �’s. Additionally, Eq (5) shows that when we are using a binary input value, the coefficient itself is the
contribution. However, when we are using a continuous input value, we need to multiply the coefficient and
the input value xj,k to correctly calculate the contribution.

4 Experiments

In this section, we demonstrate that while RETAIN is competitive with RNNs in terms of performance, we can
interpret the knowledge learned by it. Due to lack of space, we only report the results on learning to diagnose
(L2D) task and defer the results on disease progression modeling (DPM) to Appendix B. The source code of
RETAIN is publicly available at https://github.com/mp2893/retain.
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Table 1: Statistics of EHR dataset. (D:Diagnosis, R:Medication, P:Procedure)

# of patients 263,683 Avg. # of codes in a visit 3.03
# of visits 14,366,030 Max # of codes in a visit 62
Avg. # of visits per patient 54.48 Avg. # of Dx codes in a visit 1.83
# of medical code groups 615 (D:283, R:94, P:238) Max # of Dx in a visit 42

4.1 Experimental setting
Source of data: The dataset consists of Electronic Health Records collected by a non-profit health
organization. The patients are middle-aged adults chosen for a heart failure study. From the encounter
records, medication orders, procedure orders and problem lists, we extracted visit records consisting of
diagnosis, medication and procedure codes. To reduce the dimensionality while preserving the clinical
information, we used existing medical groupers to aggregate the codes into input variables. The details of the
medical groupers are given in the Appendix A. The statistics of the dataset are provided in Table 1.

Implementation details: We implemented RETAIN with Theano 0.8 [4]. For training the model, we
used Adadelta [38] with the mini-batch of 100 patients. The training was done in a machine equipped with
Intel Xeon E5-2630, 256GB RAM, two Nvidia Tesla K80’s and CUDA 7.5.

Baselines: We use the following baseline models.

• Logistic regression (LR): We compute the counts of medical codes for each patient based on all her
visits as input variables and normalize the vector to zero mean and unit variance. We use the resulting
vector to train the logistic regression.

• MLP: We use the same feature construction as LR, but put a hidden layer of size 256 between the
inpuputt and output.

• RNN: RNN with two hidden layers of size 256 implemented by the GRU. Input sequences x1, . . . ,xi are
used. Logistic regression is applied to the top hidden layer. We use two layers of RNN of to match the
model complexity of RETAIN.

• RNN+↵M : One layer single directional RNN (hidden layer size 256) along time to generate the input
embeddings v1, . . . ,vi. We use the MLP with a single hidden layer of size 256 to generate the visit-level
attentions ↵1, . . . ,↵i. We use the input embeddings v1, . . . ,vi as the input to the MLP. This baseline
corresponds to Figure 1a.

• RNN+↵R: This is similar to RNN+↵M but use the reverse-order RNN (hidden layer size 256) to
generate the visit-level attentions ↵1, . . . ,↵i. We use this baseline to confirm the effectiveness of generating
the attentions using reverse time order.

The baselines are visually illustrated and compared in Appendix C. We use the same implementation,
hyper-parameter exploration and training method for the baselines as described above. We describe in detail
the hyper-parameters, regularization and drop-out strategies for the baseline models in Appendix A.

Evaluation measures: We use two types of metrics to measure the accuracy.

• Negative log-likelihood on test set: Negative log-likelihood measures the model loss on the test set.
The loss can be calculated by Eq (1).

• Area Under the ROC Curve (AUC): is the area under the receiver operating characteristic curve of
comparing byi with with the true label yi. AUC is more robust to imbalanced positive/negative prediction
labels which makes is appropriate for evaluation of classification accuracy in the heart failure prediction
task.

We also report the standard deviation of the performance measures by bootstrapping the results on the test
set for 10,000 times.
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Table 2: Heart failure prediction performance of RETAIN and the baselines

Model Test Neg Log Likelihood AUC Train Time / epoch Test Time
LR 0.3269± 0.0105 0.7900± 0.0111 0.15s 0.11s
MLP 0.2959± 0.0083 0.8256± 0.0096 0.25s 0.11s
RNN 0.2577± 0.0082 0.8706± 0.0080 10.3s 0.57s
RNN+↵M 0.2691± 0.0082 0.8624± 0.0079 6.7s 0.48s
RNN+↵R 0.2605± 0.0088 0.8717± 0.0080 10.4s 0.62s
RETAIN 0.2562± 0.0083 0.8705± 0.0081 10.8s 0.63s

4.2 Heart Failure Prediction
Objective: Given a visit sequence x1, . . . ,xT , we try to predict if the patient will be diagnosed with heart
failure (HF). This can be seen as a special case of DPM where we make a prediction for a single disease at
the end of the sequence. Since this is a binary prediction task, we use the logistic sigmoid function instead of
the Softmax in Step 5.

Cohort construction: From the source dataset, 3,884 cases are selected and approximately 10 controls
are selected for each case (28,903 controls). The case/control selection criteria are fully described in the
supplementary section. Cases have index dates to denote the date they are diagnosed with HF. Controls
have the same index dates as their corresponding cases. We extract diagnosis codes, medication codes and
procedure codes in the 18-months window before the index date.

Training details: The patient cohort was divided into the training, validation and test set in a
0.75:0.1:0.15 ratio. The validation set was used to determine the values of the hyper-parameters. The details
of hyper-parameter tuning is provided in the supplementary section.

Results: Table 2 compares the prediction performance of RETAIN against the baselines. There is a large
gap in the performance of logistic regression, MLP, and temporal learning algorithms including RNN variants
and our RETAIN, because the temporality is modeled. We see that while RETAIN is quite competitive with the
best performing RNN variants, it beats RNN in terms of test negative log-likelihood and is very close to the
best one in AUC measure. Given the interpretation benefit, RETAIN can be a great choice for clinical decision
support applications.

Note that RNN+↵R model are a degenerated version of RETAIN with only scalar attention measures,
which is still a competitive model as shown in table 2. This confirms the efficiency of generating attention
weights using the RNN. However, RNN+↵R model only provides scalar visit-level attention, which is not
sufficient for healthcare applications. Patients often receives several medical codes at a single visit, and it will
be important to distinguish their relative importance to the target. We show such a case study in section 4.3.

Table 2 also shows the scalability of RETAIN. The training time is the number of seconds to train the
model over the entire training set once, i.e., training time for 1 epoch. The test time is the number of seconds
to generate the prediction output for the entire test set. We use the mini-batch of 100 patients in both cases.
Note that RNN takes longer time than RNN+↵M because of its two-layer structure, whereas RNN+↵M

uses a single layer RNN. The models that use two RNNs (RNN, RNN+↵R, RETAIN)2 take similar time to
train for one epoch. However, each model takes different number of epochs to converge. RNN typically takes
approximately 10 epochs, RNN+↵M and RNN+↵R 15 epochs and RETAIN 30 epochs. Lastly, training the
attention models (RNN+↵M , RNN+↵R and RETAIN) for DPM would take considerably longer than L2D,
because they will generate context vectors at each time step. RNN, on the other hand, does not require
additional computation other than embedding the visit to its hidden layer to predict target labels at each
time step. Therefore, in DPM, the training time of the attention models will linearly increase by the length
of the input sequence.

2
RNN uses two layers of RNN, RNN+↵R uses one for visit embedding and one for generating ↵, RETAIN uses each for

generating ↵ and �
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Figure 3: (a) Visualizing the visit records of a heart failure (HF) case patient and analyze the contribution
of the variables (diagnosis codes) for making the binary prediction. x-axis represents the time and y-axis
represents the amount of contributions of each code. (b) We reverse the order of the visit sequence to see if
RETAIN can properly adjust to the new visit sequence. (c) We add medication codes to the visit record to see
how it changes the behavior of RETAIN.

4.3 Model Interpretation for Heart Failure Prediction
We demonstrate the interpretability of RETAIN by studying its behavior in the HF prediction task. We choose
a HF patient from the test set and calculate the contribution of the variables (medical codes in this case) for
making the binary prediction. Figure 3a is the visualization of the contributions of the variables in each visit.
The patient suffered from skin problems, skin disorder (SD), benign neoplasm (BN), excision of skin lesion
(ESL), for some time before showing symptoms of HF, cardiac dysrhythmia (CD), heart valve disease (HVD)
and coronary atherosclerosis (CA), then being diagnosed with HF at the end. We can see that skin-related
codes from the earlier visits made little contribution to HF prediction as expected. RETAIN properly puts
much attention to the HF-related codes that occurred in recent visits.

In order to evaluate RETAIN’s ability to generate attentions considering the temporality, we reverse the
visit sequence of Figure 3a and feed it to RETAIN. Figure 3b shows the contribution of the medical codes
of the reversed visit record. HF-related codes in the old visits are still making positive contributions, but
not as much as they did in Figure 3a. Figure 3b also emphasizes RETAIN’s superiority to interpretable, but
stationary models such as logistic regression. Stationary models often aggregate past information and remove
the temporality from the input data, which can mistakenly lead to the same risk prediction for Figure 3a
and 3b. RETAIN, however, can correctly digest the sequential information and calculates the HF risk score of
9.0%, which is significantly lower than that of Figure 3a.

Figure 3c shows how the contributions of the codes change when we gave the patient proper medications
in the early stage. We added two medications from day 219: antiarrhythmics (AA) and anticoagulants (AC),
both of which are used to treat cardiac dysrhythmia (CD). We can see that the two medications are making
negative contributions as expected, especially towards the end of the record. The medications helped decrease
the positive contributions of heart valve disease and cardiac dysrhythmia in the last visit. Indeed, the HF
risk prediction (.2165) of Figure 3c is lower than that of Figure 3a (.2474). This suggests that taking proper
medications can help the patient in reducing the HF risk.
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5 Conclusion

We present the need for interpretable and accurate predictive model in healthcare applications. Given the
power of recurrent neural networks for analyzing sequential data, we proposed RETAIN, which preserves RNN’s
predictive power while allowing a higher degree of interpretation. The key idea of RETAIN is to improve the
prediction accuracy through a sophisticated attention generation process, while keeping the representation
learning part simple for interpretation, making the entire algorithm accurate and interpretable. RETAIN trains
two RNN in a reverse time order to efficiently generate the appropriate attention variables. For future work,
we plan to developing an interactive visualization system for RETAIN and evaluating RETAIN in healthcare
applications.
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A Details of the experiment settings

A.1 Hyper-parameter Tuning
We used the validation set to tune the hyper-parameters: visit embedding size m, RNN↵’s hidden layer size
p, RNN�’s hidden layer size q, L2 regularization coefficient, and drop-out rates.

L2 regularization was applied to all weights except the ones in RNN↵ and RNN�. Two separate drop-outs
were used on the visit embedding vi and the context vector ci. We performed the random search with
predefined ranges m, p, q 2 {32, 64, 128, 200, 256}, L2 2 {0.1, 0.01, 0.001, 0.0001}, dropoutvi , dropoutci 2
{0.0, 0.2, 0.4, 0.6, 0.8}. We also performed the random search with m, p and q fixed to 256.

The final value we used to train RETAIN for heart failure prediction is m, p, q = 128, dropoutvi = 0.6,
dropoutci = 0.6 and 0.0001 for the L2 regularization coefficient.

A.2 Code Grouper
Diagnosis codes, medication codes and procedure codes in the dataset are respectively using International
Classification of Diseases (ICD-9), Generic Product Identifier (GPI) and Current Procedural Terminology
(CPT).

Diagnosis codes are grouped by Clinical Classifications Software for ICD-9[16] which reduces the number
of diagnosis code from approximately 14,000 to 283. Medication codes are grouped by Generic Product
Identifier Drug Group[24] which reduces the dimension to from approximately 151,000 to 96. Procedure codes
are grouped by Clinical Classifications Software for CPT[17], which reduces the number of CPT codes from
approximately 9,000 to 238.

A.3 Training Specifics of the Basline Models
• LR: We use 0.01 L2 regularization coefficient for the logistic regression weight.

• MLP: We use drop-out rate 0.6 on the output of the hidden layer. We use 0.0001 L2 regularization
coefficient for the hidden layer weight and the logistic regression weight.

• RNN: We use drop-out rate 0.6 on the outputs of both hidden layers. We use 0.0001 L2 regularization
coefficient for the logistic regression weight. The dimension size of both hidden layers is 256.

• RNN+↵M : We use drop-out rate 0.4 on the output of the hidden layer and 0.6 on the output of the
context vector

P
i ↵ivi. We use 0.0001 L2 regularization coefficient for the hidden layer weight of the

MLP that generates ↵’s and the logistic regression weight. The dimension size of the hidden layers in
both RNN and MLP is 256.

• RNN+↵R: We use drop-out rate 0.4 on the output of the hidden layer and 0.6 on the output of the
context vector

P
i ↵ivi. We use 0.0001 L2 regularization coefficient for the hidden layer weight of the

RNN that generates ↵’s and the logistic regression weight. The dimension size of the hidden layers in
both RNNs is 256.

A.4 Heart Failure Case/Control Selection Criteria
Case patients were 40 to 85 years of age at the time of HF diagnosis. HF diagnosis (HFDx) is defined as: 1)
Qualifying ICD-9 codes for HF appeared in the encounter records or medication orders. Qualifying ICD-9
codes are displayed in Table 3. 2) a minimum of three clinical encounters with qualifying ICD-9 codes had to
occur within 12 months of each other, where the date of diagnosis was assigned to the earliest of the three
dates. If the time span between the first and second appearances of the HF diagnostic code was greater than
12 months, the date of the second encounter was used as the first qualifying encounter. The date at which
HF diagnosis was given to the case is denoted as HFDx. Up to ten eligible controls (in terms of sex, age,
location) were selected for each case, yielding an overall ratio of 9 controls per case. Each control was also
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Table 3: Qualifying ICD-9 codes for heart failure

assigned an index date, which is the HFDx of the matched case. Controls are selected such that they did not
meet the operational criteria for HF diagnosis prior to the HFDx plus 182 days of their corresponding case.
Control subjects were required to have their first office encounter within one year of the matching HF case
patient’s first office visit, and have at least one office encounter 30 days before or any time after the case’s
HF diagnosis date to ensure similar duration of observations among cases and controls.

B Results on disease progression modeling

Objective: Given a sequence of visits x1, . . . ,xT , the goal of DPM is, for each time step i, to predict the
codes occurring at the next visit x2, . . . ,xT+1. However, as we are interested in the disease progression, we
create a separate set of labels y1, . . . ,yT that do not contain non-diagnosis codes such as medication codes or
procedure codes. Therefore yi will contain diagnosis codes from the next visit xi+1.

Dataset: We divide the entire dataset described in Table 1 into 0.75:0.10:0.15 ratio, respectively for
training set, validation set, and test set.

Baseline: We use the same baseline models we used for HF prediction. However, since we are predicting
283 binary labels now, we replace the logistic regression function with the Softmax function. The drop-out
and L2 regularization policies remain the same.

For LR and MLP, at each step i, we aggregate maximum ten past input vectors3 xi�9, . . . ,xi to create a
pseudo-context vector bci. LR applies the Softmax function on top of bci. MLP places a hidden layer on top of
b
ci then applies the Softmax function.

Evaluation metric: We use the negative log likelihood Eq (1) on the test set to evaluate the model
performance. We also use Recall@k as an additional metric to measure the prediction accuracy.

• Recall@k: Given a sequence of visits x1, . . . ,xT , we evaluate the model performance based on how
3
We also tried aggregating all past input vectors x1, . . . ,xi, but the performance was slightly worse than using just ten.
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Table 4: Disease progression modeling performance of RETAIN and the baselines

Model

Negative

Likelihood

Recall@5 Recall@10

LR 0.0288 43.15 55.84
MLP 0.0267 50.72 65.02
RNN 0.0258 55.18 69.09
RNN+↵M 0.0262 52.15 65.81
RNN+↵R 0.0259 53.89 67.45
RETAIN 0.0259 54.25 67.74

accurately it can predict the diagnosis codes y1, . . . ,yT . We use the average Recall@k, which is expressed
as below,

1

N

NX

n=1

1

T

(n)

T (n)X

i=1

Recall@k(byi), where Recall@k(byi) =
|argsort(byi)[: k] \ nonzero(yi)|

|nonzero(yi)|

where argsort returns a list of indices that will decrementally sort a given vector and nonzero returns a
list of indices of the coordinates with non-zero values. We use Recall@k because of its similar nature to
the way a human physician performs the differential diagnostic procedure, which is to generate a list of
most likely diseases for an undiagnosed patient, then perform medical practice until the true disease, or
diseases are determined.

Prediction accuracy: Table 4 displays the prediction performance of RETAIN and the baselines. We use
k = 5, 10 for Recall@k to allow a reasonable number of prediction trials, as well as cover complex patients
who often receive multiple diagnosis codes at a single visit.

RNN shows the best prediction accuracy for DPM. However, considering the purpose of DPM, which is to
assist doctors to provide quality care for the patient, black-box behavior of RNN makes it unattractive as a
clinical tool. On the other hand, RETAIN performs as well as other attention models, only slightly inferior
to RNN, provides full interpretation of its prediction behavior, making it a feasible solution for clinical
applications.

The interesting finding in Table 4 is that MLP is able to perform as accurately as RNN+↵M in terms of
Recall@10. Considering the fact that MLP uses aggregated information of past ten visits, we can assume that
DPM depends more on the frequency of disease occurrences rather than the order in which they occurred. This
is quite different from the HF prediction task, where stationary models (LF, MLP) performed significantly
worse than sequential models.

C Illustration and comparison of the baselines

Figure 4 illustrates the baselines used in the experiments and shows the relationship among them.
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Figure 4: Graphical illustration of the baselines: (a) Logistic regression (LR), (b) Multilayer Perceptron (MLP),
(c) Recurrent neural network (RNN), (d) RNN with attention vectors generated via an MLP (RNN+↵M ),
(e) RNN with attention vectors generated via an RNN (RNN+↵R). RETAIN is given in Figure 1b.
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